• Traitements

  • Traitements systémiques : découverte et développement

  • Leucémie

ON 01910.Na is selectively cytotoxic for Chronic Lymphocytic Leukemia cells through a dual mechanism involving PI3K/AKT inhibition and induction of oxidative stress

Menée in vitro, cette étude analyse les effets d'un composé appelé ON 01910.Na ou rigosertib, un inhibiteur de PI3K, sur des cellules de leucémie lymphocytaire chronique

Purpose: Chronic Lymphocytic Leukemia (CLL), a malignancy of mature B-cells, is incurable with chemotherapy. Signals from the microenvironment support leukemic cell survival and proliferation, and may confer chemotherapy resistance. ON 01910.Na (Rigosertib) a multikinase PI3K inhibitor is entering phase III trials for myelodysplastic syndrome. Our aim was to analyze the efficacy of ON 01910.Na against CLL cells in vitro and investigate the molecular effects of this drug on tumor biology. Experimental design: Cytotoxicity of ON 01910.Na against CLL cells from 34 patients was determined in vitro using flow cytometry of cells stained with Annexin V and CD19. Global gene expression profiling on Affymetrix microarrays, flow cytometry, western blotting, and co-cultures with stroma cells were used to delineate ON 01910.Na mechanism of action. Results: ON 01910.Na induced apoptosis in CLL B-cells without significant toxicity against T-cells or normal B-cells. ON 01910.Na was equally active against leukemic cells associated with a more aggressive disease course (IGHV unmutated, adverse cytogenetics) than against cells without these features. Gene expression profiling revealed two main mechanisms of action: PI3K/AKT inhibition and induction of ROS that resulted in an oxidative stress response through activating protein 1 (AP-1), c-Jun NH2-terminal kinase, and ATF3 culminating in the upregulation of NOXA. ROS scavengers and shRNA mediated knockdown of ATF3 and NOXA protected cells from drug induced apoptosis. ON 01910.Na also abrogated the pro-survival effect of follicular dendritic cells on CLL cells and reduced SDF-1-induced migration of leukemic cells. Conclusions: These data support the clinical development of ON 01910.Na in CLL.

Clinical Cancer Research

Voir le bulletin