Tpl2 ablation promotes intestinal inflammation and tumorigenesis in Apcmin mice by inhibiting IL-10 secretion and regulatory T-cell generation
Menée sur un modèle murin transgénique, cette étude montre que l'ablation du gène Tpl2 favorise un mécanisme inflammatoire et la formation d'adénomes intestinaux
To address the role of Tpl2, a MAP3K8 that regulates innate/adaptive immunity and inflammation, in intestinal tumorigenesis, we crossed a Tpl2 KO allele into the Apcmin/+ genetic background. Here, we show that Apcmin/+/Tpl2−/− mice exhibit a fivefold increase in the number of intestinal adenomas. Bone marrow transplantation experiments revealed that the enhancement of polyposis was partially hematopoietic cell-driven. Consistent with this observation, Tpl2 ablation promoted intestinal inflammation. IL-10 levels and regulatory T-cell numbers were lower in the intestines of Tpl2−/− mice, independent of Apc and polyp status, suggesting that they were responsible for the initiation of the enhancement of tumorigenesis caused by the ablation of Tpl2. The low IL-10 levels correlated with defects in mTOR activation and Stat3 phosphorylation in Toll-like receptor-stimulated macrophages and with a defect in inducible regulatory T-cell generation and function. Both polyp numbers and inflammation increased progressively with time. The rate of increase of both, however, was more rapid in Apcmin/+/Tpl2−/− mice, suggesting that the positive feedback initiated by inflammatory signals originating in developing polyps is more robust in these mice. This may be because these mice have a higher intestinal polyp burden as a result of the enhancement of tumor initiation.