Imatinib resistance and microcytic erythrocytosis in a KitV558Δ;T669I/+ gatekeeper-mutant mouse model of gastrointestinal stromal tumor
Cet article évalue l'intérêt d'un modèle murin comportant une deuxième mutation du récepteur Kit pour étudier le mécanisme de résistance à l'imatinib dans les tumeurs stromales gastro-intestinales
Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations. To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a mouse model carrying in the endogenous Kit locus both the KitV558Δ mutation found in a familial case of GIST and the KitT669I (human KITT670I) “gatekeeper” mutation found in imatinib-resistant GIST patients. Similar to KitV558∆/+ mice, KitV558∆;T669I/+ mice developed gastric and colonic interstitial cell of Cajal hyperplasia as well as cecal GIST. In contrast to the single-mutant KitV558∆/+ control mice, treatment of the KitV558∆;T669I/+ mice with either imatinib or dasatinib failed to inhibit oncogenic Kit signaling and GIST growth. However, this resistance could be overcome by treatment of KitV558∆;T669I/+ mice with sunitinib or sorafenib. Although tumor lesions were smaller in KitV558∆;T669I/+ mice than in single-mutant mice, both interstitial cell of Cajal hyperplasia and mast cell hyperplasia were exacerbated in KitV558∆;T669I/+ mice. Strikingly, the KitV558∆;T669I/+ mice developed a pronounced polycythemia vera-like erythrocytosis in conjunction with microcytosis. This mouse model should be useful for preclinical studies of drug candidates designed to overcome imatinib resistance in GIST and to investigate the consequences of oncogenic KIT signaling in hematopoietic as well as other cell lineages.