• Prévention

  • Chimioprévention

  • Peau (hors mélanome)

Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3-K

Menée in vitro et à l'aide de modèles murins, cette étude identifie le mécanisme par lequel la taxifoline, un flavonoïde d'origine végétale, inhibe la carcinogenèse de la peau induite par les ultraviolets

Skin cancer is one of the most commonly diagnosed cancers in United States. Taxifolin reportedly exerts multiple biological effects but the molecular mechanisms and direct target(s) of taxifolin in skin cancer chemoprevention are still unknown. In silico computer screening and kinase profiling results suggest that the epidermal growth factor receptor (EGFR), phosphatidyl inositol 3-kinase (PI3-K) and Src are potential targets for taxifolin. Pull-down assay results showed that EGFR, PI3-K and Src directly interacted with taxifolin in vitro, whereas taxifolin bound to EGFR and PI3-K but not to Src in cells. ATP-competition and in vitro kinase assay data revealed that taxifolin interacted with EGFR and PI3-K at the ATP binding pocket and inhibit their kinase activities. Western blot analysis showed that taxifolin suppressed UVB-induced phosphorylation of EGFR and Akt, and subsequently suppressed their signaling pathways in JB6 P+ mouse skin epidermal cells. Expression levels and promoter activity of COX-2 and prostaglandin E2 (PGE2) generation induced by UVB were also attenuated by taxifolin. The effect of taxifolin on UVB-induced signaling pathways and PGE2 generation was reduced in EGFR knockout murine embryonic fibroblasts (MEFs) compared with EGFR wildtype MEFs. Taxifolin also inhibited EGF-induced cell transformation. Importantly, topical treatment of taxifolin to the dorsal skin significantly suppressed tumor incidence, volume and multiplicity in a solar-UV (SUV)-induced skin carcinogenesis mouse model. Further analysis showed that the taxifolin-treated group had a substantial reduction in SUV-induced phosphorylation of EGFR and Akt in mouse skin. These results suggest that taxifolin exerts chemopreventive activity against UV-induced skin carcinogenesis.

Cancer Prevention Research

Voir le bulletin