Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors
Menée sur des modèles murins, cette étude évalue l'efficacité d'un liposome embarquant de la doxorubicine susceptible d'être relâchée dans le réseau vasculaire tumoral suite à un réchauffement local
Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The EPR effect (Enhanced Permeability and Retention) can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration. Further, slow drug release limits bioavailability. We developed a fast drug-releasing liposome triggered by local heat that has already shown substantial anti-tumor efficacy and is in human trials. Here, we demonstrate that thermally sensitive liposomes release doxorubicin inside the tumor vasculature. Real-time confocal imaging of doxorubicin delivery to murine tumors in window chambers and histologic analysis of flank tumors illustrates that intravascular drug release increases free drug in the interstitial space. This increases both the time that tumor cells are exposed to maximum drug levels and the drug penetration distance, compared with free drug or traditional pegylated liposomes. These improvements in drug bioavailability establish a new paradigm in drug delivery: rapidly triggered drug release in the tumor bloodstream.