• Traitements

  • Traitements systémiques : découverte et développement

  • Mélanome

Synthetic lethal screening with small molecule inhibitors provides a pathway to rational combination therapies for melanoma

Menée sur neuf lignées cellulaires de mélanome, cette étude évalue la capacité de 300 combinaisons médicamenteuses à exercer une cytotoxicité

Recent data demonstrate that extracellular signals are transmitted through a network of proteins rather than hierarchical signaling pathways suggesting why inhibition of a single component of a canonical pathway is insufficient for the treatment of cancer. The biological outcome of signaling through a network is inherently more robust and resistant to inhibition of a single network component. In this study, we performed a functional chemical genetic screen to identify novel interactions between signaling inhibitors that would not be predicted based on our current understanding of signaling networks. We screened over 300 drug combinations in nine melanoma cell lines and have identified pairs of compounds that show synergistic cytotoxicity. The synergistic cytotoxicities identified did not correlate with the known RAS and BRAF mutational status of the melanoma cell lines. Among the most robust results was synergy between sorafenib, a multi-kinase inhibitor with activity against RAF, and diclofenac, a non-steroidal anti-inflammatory drug (NSAID). Drug substitution experiments using the NSAIDs celecoxib and ibuprofen or the MEK inhibitor PD325901 and the RAF inhibitor RAF265 suggest that inhibition of cyclooxygenase (COX) and MAP kinase signaling are targets for the synergistic cytotoxicity of sorafenib and diclofenac. Co-treatment with sorafenib and diclofenac interrupts a positive feedback signaling loop involving ERK, cPLA2, and COX. Genome-wide expression profiling demonstrates synergy-specific down-regulation of survival-related genes. This study has uncovered novel functional drug combinations and suggests that the underlying signaling networks that control responses to targeted agents can vary substantially depending on unexplored components of the cell genotype.

http://mct.aacrjournals.org/content/early/2012/09/06/1535-7163.MCT-12-0461.abstract

Voir le bulletin