• Biologie

  • Progression et métastases

  • Prostate

Dual roles of PARP-1 promote cancer growth and progression

Menée sur des lignées cellulaires et à l'aide de xénogreffes, cette étude met en évidence le rôle joué par l'enzyme PARP-1 dans la progression d'un cancer de la prostate

Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair, and also functions as a context-specific regulator of transcription factors. Using multiple models, data demonstrate that PARP-1 elicits pro-tumorigenic effects in androgen receptor (AR)-positive prostate cancer (PCa) cells, both in the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically-defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced PCa, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses demonstrate that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration-resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human PCa to suppress tumor growth and progression to castration-resistance.

Cancer Discovery

Voir le bulletin