• Traitements

  • Traitements systémiques : découverte et développement

  • Sein

Effect of selumetinib on the growth of anastrozole-resistant tumors

Menée à l'aide de xénogreffes, cette étude évalue les effets du selumetinib sur la croissance de tumeurs résistantes à l'anastrozole

Despite significant improvement in the treatment outcome of hormone responsive postmenopausal breast cancer, some patients eventually acquire resistance to aromatase inhibitors (AIs). Using our MCF-7Ca xenograft model, we observed that although AIs such as anastrozole initially inhibit tumor growth effectively, tumors eventually began to grow. Our previous data show that anastrozole-resistant tumors upregulate growth factor receptor pathways as they adapt to grow in the low estrogen environment. Therefore, in the current study, we investigated the effect of inhibiting the growth factor receptor pathways with a MEK-1/2 inhibitor selumetinib (AZD6244, ARRY-142866). We treated the mice with anastrozole-resistant tumors with selumetinib alone or in combination with anastrozole. MCF-7Ca cells were inoculated sc into ovariectomized athymic nude mice supplemented throughout the experiment with androstenedione (100

μg/day), the substrate for aromatase conversion to estrogen. Once the tumors reached a measurable size (~300 mm3), the mice were treated with anastrozole (200 μg/day), supplemented with androstenedione (Δ4A). The tumors in the anastrozole group doubled in volume after 6 weeks, at which time the animals were regrouped to receive the following treatments: (i) anastrozole, (ii) anastrozole withdrawal (Δ4A alone), (iii) selumetinib (25 mg/kg/d, bid, po), and (iv) selumetinib + anastrozole, (n = 10 mice/group). The treatments were given for 6 weeks (till week 12) and then the mice were euthanized, the tumors were collected and analyzed. The tumors of mice treated with selumetinib + anastrozole had significantly lower growth rates than those treated with single agents (p = 0.008). Western blot analysis of the tumors showed that treatment with anastrozole resulted in upregulation of proteins in the growth factor receptor cascade such as p-mTOR, pAkt, pMEK, and pMAPK. This was accompanied by downregulation of ERα protein, consistent with previous findings. The treatment of mice with selumetinib resulted in downregulation of activated MAPK, along with p-mTOR, which likely resulted in upregulation of ERα. Our results suggest that inhibition of the growth factor receptor pathway with selumetinib can reverse anastrozole resistance.

Breast Cancer Research and Treatment

Voir le bulletin