• Prévention

  • Chimioprévention

  • Poumon

Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling

Menée sur deux modèles murins, cette étude montre que la metformine, un antidiabétique oral, peut inhiber la tumorigenèse du poumon induite par des carcinogènes du tabac en diminuant la concentration plasmatique de l'IGF-1 et la signalisation de récepteurs à activité tyrosine kinase

Metformin is the most commonly prescribed drug for type II diabetes and is associated with decreased cancer risk. Previously, we showed that metformin prevented tobacco carcinogen (NNK)-induced lung tumorigenesis in a non-diabetic mouse model, which was associated with decreased IGF-I/insulin receptor signaling but not activation of AMPK in lung tissues, as well as decreased circulating levels of IGF-1 and insulin. Here, we used liver-IGF-1-deficient (LID) mice to determine the importance of IGF-1 in NNK-induced lung tumorigenesis and chemoprevention by metformin. LID mice had decreased lung tumor multiplicity and burden compared to WT mice. Metformin further decreased lung tumorigenesis in LID mice without affecting IGF-1 levels, suggesting that metformin can act through IGF-1-independent mechanisms. In lung tissues, metformin decreased phosphorylation of multiple receptor tyrosine kinases (RTKs) as well as levels of GTP-bound Ras independently of AMPK. Metformin also diminished plasma levels of several cognate ligands for these RTKs. Tissue distribution studies using [14C]-metformin showed that uptake of metformin was high in liver but 4 fold lower in lungs, suggesting that the suppression of RTK activation by metformin occurs predominantly via systemic, indirect effects. Systemic inhibition of circulating growth factors and local RTK signaling are new AMPK-independent mechanisms of action of metformin that could underlie its ability to prevent tobacco carcinogen-induced lung tumorigenesis.

Cancer Prevention Research

Voir le bulletin