Integrative radiogenomic profiling of squamous cell lung cancer
Menée in vitro et in silico, cette étude met en évidence l'intérêt d'une approche intégrée mettant en œuvre plusieurs méthodes à haut débit pour identifier des biomarqueurs génomiques de la sensibilité aux rayonnements ionisants dans des cellules de carcinome épidermoïde du poumon
Radiation therapy is one of the mainstays of anti-cancer treatment, but the relationship between the radiosensitivity of cancer cells and their genomic characteristics is still not well-defined. Here we report the development of a high-throughput platform for measuring radiation survival in vitro and its validation by comparison to conventional clonogenic radiation survival analysis. We combined results from this high-throughput assay with genomic parameters in cell lines from squamous cell lung carcinoma, which is standardly treated by radiation therapy, to identify parameters that predict radiation sensitivity. We showed that activation of NFE2L2, a frequent event in lung squamous cancers, confers radiation resistance. An expression-based, in silico screen nominated inhibitors of PI3K as NFE2L2 antagonists. We showed that the selective PI3K inhibitor, NVP-BKM120, both decreased NRF2 protein levels and sensitized NFE2L2 or KEAP1 mutant cells to radiation. We then combined results from this high-throughput assay with single-sample gene set enrichment analysis (ssGSEA) of gene expression data. The resulting analysis identified pathways implicated in cell survival, genotoxic stress, detoxification, and innate and adaptive immunity as key correlates of radiation sensitivity. The integrative, high-throughput methods shown here for large-scale profiling of radiation survival and genomic features of solid-tumor derived cell lines should facilitate tumor radiogenomics and the discovery of genotype-selective radiation sensitizers and protective agents.
Cancer Research , article en libre accès, 2013