Clinical and biological implications of driver mutations in myelodysplastic syndromes
A partir d'échantillons prélevés sur 738 patients atteints d'un syndrome myélodysplasique, cette étude met en évidence diverses mutations associées au développement de la maladie et à sa progression vers une leucémie myéloïde aiguë
Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including CMML and MDS-MPN) to explore the role of acquired mutations in MDS biology and clinical phenotype. 78% patients had one or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic 'predestination', in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.