• Traitements

  • Traitements systémiques : découverte et développement

  • Utérus (autre)

Crosstalk between EphA2 and BRaf/CRaf is a Key Determinant of Response to Dasatinib

Menée in vitro et in vivo sur des modèles de cancer de l'utérus, cette étude met en évidence le rôle joué par des interactions entre EphA2 et BRaf/CRaf dans la réponse au dasatinib

Purpose: EphA2 is an attractive therapeutic target due to its diverse roles in cancer growth and progression. Dasatinib is a multi-kinase inhibitor that targets EphA2 and other kinases. However, reliable predictive markers and a better understanding of the mechanisms of response to this agent are needed. Experimental Design: The effects of dasatinib on human uterine cancer cell lines were examined using a series of in vitro experiments, including MTT, Western blot, and plasmid transfection. In vivo, an orthotopic mouse model of uterine cancer was utilized to identify the biological effects of dasatinib. Molecular markers for response prediction and the mechanisms relevant to response to dasatinib were identified by using RPPA, immunoprecipitation, and double immunofluorescence staining. Results: We show that high levels of CAV-1, EphA2 phosphorylation at S897 and the status of PTEN are key determinants of dasatinib response in uterine carcinoma. A set of markers essential for dasatinib response was also identified and includes CRaf, pCRafS338, pMAPKT202/Y204 (MAPK pathway), pS6S240/244, p70S6kT389 (mTOR pathway) and pAKTS473. A novel mechanism for response was discovered whereby high expression level of CAV-1 at the plasma membrane disrupts the BRaf/CRaf heterodimer and thus inhibits the activation of MAPK pathway during dasatinib treatment. Conclusions: Our in vitro and in vivo results provide a new understanding of EphA2 targeting by dasatinib and identify key predictors of therapeutic response. These findings have implications for ongoing dasatinib-based clinical trials.

Clinical Cancer Research

Voir le bulletin