Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation
Menée in vitro et in vivo, cette étude montre que la digitoflavone d'origine alimentaire peut, via l'activation de la voie de signalisation Nrf2 et l'inhibition du processus inflammatoire, prévenir la tumorigenèse du côlon associée à une colite
Background : Nuclear factor-erythroid 2-related factor 2 (Nrf2) has emerged as a novel target for the prevention of colorectal cancer (CRC). Many chemopreventive compounds associated with Nrf2 activation are effective in preclinical systems and many on-going clinical trials are showing promising findings. In present study we evaluated the cytoprotective effect and chemopreventive properties of dietary digitoflavone. Method : A cell based Antioxidant Response Element (ARE)-driven luciferase reporter system was applied to screen potential Nrf2 activators. Activation of Nrf2 by digitoflavone was confirmed through mRNA, protein and GSH level assay in Caco-2 cell line. The cytoprotective effect of digitoflavone was evaluated in H2O2-induced oxidative stress model and further signaling pathways analysis was used to determine the target of digitoflavone induced Nrf2 activation. An AOM-DSS induced colorectal cancer model was used to assess the chemopreventive effect of digitoflavone. Result : Micromolarity (10 muM) level of digitoflavone increased Nrf2 expressing, nuclear translocation and expression of downstream phase II antioxidant enzymes. Furthermore, digitoflavone decreased H2O2-induced oxidative stress and cell death via p38 MAPK-Nrf2/ARE pathway. In vivo study, 50 mg/kg digitoflavone significantly reduced AOM-DSS induced tumor incidence, number and size. Conclusion : These observations suggest that digitoflavone is a novel Nrf2 pathway activator, and protects against oxidative stress-induced cell injury. The results of the present study add further evidence of the molecular mechanisms that allow digitoflavone to exert protective effects and reaffirm its potential role as a chemopreventive agent in colorectal carcinogenesis.