• Dépistage, diagnostic, pronostic

  • Découverte de technologies et de biomarqueurs

  • Rein

DNA Methylation Signature Reveals Cell Ontogeny of Renal Cell Carcinomas

Menée à l'aide d'échantillons tumoraux prélevés sur des patients atteints d'un carcinome à cellules rénales, puis validée notamment sur des données du projet "The Cancer Genome Atlas", cette étude identifie des signatures, basées sur des profils de méthylation de l'ADN, permettant de classifier des sous-types de la maladie et, pour les patients atteints d'un carcinome à cellules claires, identifie une association avec un pronostic défavorable

Background: DNA methylation is a heritable covalent modification that is developmentally regulated and is critical in tissue-type definition. Although genotype-phenotype correlations have been described for different subtypes of renal cell carcinoma (RCC), it is unknown if DNA methylation profiles correlate with morphological or ontology based phenotypes. Here we test the hypothesis that DNA methylation signatures can discriminate between putative precursor cells in the nephron.

Experimental designs: We performed deep profiling of DNA methylation and transcriptome in diverse histopathological RCC subtypes and validated DNA methylation in an independent dataset as well as in The Cancer Genome Atlas Clear Cell and Chromophobe Renal Cell Carcinoma Datasets.

Results: Our data provide the first mapping of methylome epi-signature and indicates that RCC subtypes can be grouped into two major epi-clusters: C1 which encompasses clear-cell RCC, papillary RCC, mucinous and spindle cell carcinomas and translocation RCC; C2 which comprises oncocytoma and chromophobe RCC. Interestingly, C1 epi-cluster displayed three fold more hypermethylation as compared to C2 epi-cluster. Of note, differentially methylated regions between C1 and C2 epi-clusters occur in gene bodies and intergenic regions, instead of gene promoters. Transcriptome analysis of C1 epi-cluster suggests a functional convergence on Polycomb targets, whereas C2 epi-cluster displays DNA methylation defects. Furthermore, we find that our epigenetic ontogeny signature is associated with worse outcomes of patients with clear-cell RCC.

Conclusion: Our data defines the epi-clusters that can discriminate between distinct RCC subtypes and for the first time define the epigenetic basis for proximal versus distal tubule derived kidney tumors.

Clinical Cancer Research , résumé, 2016

Voir le bulletin