DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a phase 3 trial
A partir de données portant sur 918 patients pédiatriques atteints d'une leucémie lymphoblastique et inclus dans un essai de phase III, cette étude prospective évalue l'association entre le niveau de 6-thioguanine nucléotides (6-TGN) des leucocytes circulants et la survie sans récidive pendant un traitement d'entretien à base de mercaptopurine et méthotrexate
Background : Adjustment of mercaptopurine and methotrexate maintenance therapy of acute lymphoblastic leukaemia by leucocyte count is confounded by natural variations. Cytotoxicity is primarily mediated by DNA-incorporated thioguanine nucleotides (DNA-TGN). The aim of this study was to establish whether DNA-TGN concentrations in blood leucocytes during maintenance therapy are associated with relapse-free survival.
Methods : In this substudy of the NOPHO ALL2008 phase 3 trial done in 23 hospitals in seven European countries (Denmark, Estonia, Finland, Iceland, Lithuania, Norway, and Sweden), we analysed data from centralised and blinded analyses of 6-mercaptopurine and methotrexate metabolites in blood samples from patients with non-high-risk childhood acute lymphoblastic leukaemia. Eligible patients were aged 1·0–17·9 years; had been diagnosed with non-high-risk precursor B-cell or T-cell leukaemia; had been treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol; and had reached maintenance therapy in first remission. Maintenance therapy was (mercaptopurine 75 mg/m2 once per day and methotrexate 20 mg/m2 once per week, targeted to a leucocyte count of 1·5–3·0 × 109 cells per L). We measured DNA-TGN and erythrocyte concentrations of TGN nucleotides, methylated mercaptopurine metabolites, and methotrexate polyglutamates. The primary objective was the association of DNA-TGN concentrations and 6-mercaptopurine and methotrexate metabolites with relapse-free survival. The secondary endpoint was the assessment of DNA-TGN concentration and 6-mercaptopurine and methotrexate metabolites during maintenance therapy phase 2.
Findings : Between Nov 26, 2008 and June 14, 2016, 1509 patients from the NOPHO ALL2008 study were assessed for eligibility in the DNA-TGN substudy, of which 918 (89%) of 1026 eligible patients had at least one DNA-TGN measurement and were included in the analyses. Median follow-up was 4·6 years (IQR 3·1–6·1). Relapse-free survival was significantly associated with DNA-TGN concentration (adjusted hazard ratio 0·81 per 100 fmol/
μg DNA increase, 95% CI 0
·67–0·98; p=0·029). In patients with at least five blood samples, erythrocyte concentrations of TGN, methylated mercaptopurine metabolites, and methotrexate polyglutamates were associated with DNA-TGN concentration (all p<0·0001).
Interpretation : Our results suggest the need for intervention trials to identify clinically applicable strategies for individualised drug dosing to increase DNA-TGN concentration, and randomised studies to investigate whether such strategies improve cure rates compared with current dose adjustments based on white blood cell counts.
The Lancet Oncology , résumé, 2016