• Etiologie

  • Facteurs exogènes : Tabac

E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

Menée sur des modèles murins, cette étude évalue l'effet d'une exposition à la fumée des cigarettes électroniques sur les dommages causés à l'ADN et sur les mutations des cellules du poumon, du coeur et de la vessie, puis met en avant la nature carcinogène de ses composés, notamment produits lors du processus de nitrosation de la nicotine

E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indicate that nicotine nitrosation occurs in the lung, bladder, and heart, and that its products are further metabolized into DNA damaging agents. We propose that ECS, through damaging DNA and inhibiting DNA repair, might contribute to human lung and bladder cancer as well as to heart disease, although further studies are required to substantiate this proposal.E-cigarette smoke delivers stimulant nicotine as aerosol without tobacco or the burning process. It contains neither carcinogenic incomplete combustion by products nor tobacco nitrosamines, the nicotine nitrosation products. E-cigarettes are promoted as safe and have gained significant popularity. In this study, instead of detecting nitrosamines, we directly measured DNA damage induced by nitrosamines in different organs of E-cigarette smoke-exposed mice. We found mutagenic O6-methyldeoxyguanosines and γ-hydroxy-1,N2-propano-deoxyguanosines in the lung, bladder, and heart. DNA-repair activity and repair proteins XPC and OGG1/2 are significantly reduced in the lung. We found that nicotine and its metabolite, nicotine-derived nitrosamine ketone, can induce the same effects and enhance mutational susceptibility and tumorigenic transformation of cultured human bronchial epithelial and urothelial cells. These results indicate that nicotine nitrosation occurs in vivo in mice and that E-cigarette smoke is carcinogenic to the murine lung and bladder and harmful to the murine heart. It is therefore possible that E-cigarette smoke may contribute to lung and bladder cancer, as well as heart disease, in humans.

Proceedings of the National Academy of Sciences 2018

Voir le bulletin