Next-generation nuclear morphology to grade solid tumours
Menée à partir de l'analyse de 461 000 images de l'ADN nucléaire des cellules tumorales issues de 390 patients atteints d'un cancer colorectal de stade I à II, puis validée auprès de 6 cohortes incluant au total 2 531 patients atteints d'un cancer colorectal de stade II, d'un carcinome de l'ovaire de stade I, d'un sarcome utérin, d'un carcinome de la prostate ou d'un carcinome de l'endomètre, cette étude évalue l'association entre l'hétérogénéité de la chromatine et la survie des patients
A central task for surgical pathologists diagnosing tumours is to reliably assess tumour aggressiveness from morphologic features. This tumour grade guides clinical therapy planning, and specific grading systems exist for all major tumour types. Typical components of grading systems are tissue architecture, degree of resemblance to the respective benign tissue, mitotic activity, necrosis, and aberrances in nuclear morphology (ie, nuclear pleomorphism, variations in size, nucleolar prominence, and chromatin distribution). Flemming1 coined the term chromatin in 1879 when describing nuclear structures that could be stained with basic dyes in the interphase, whereas Waldeyer2 introduced the term chromosome in 1888 when describing mitotic chromatin. Soon after, chromosomal alterations in tumours were described by Bovari,3 who also hypothesised a causal role of unequal chromatin distribution in carcinogenesis. It is probably the simplicity of this theory that explains its popularity among medical laymen and patients to this day. The dogma of all morphologists, that function follows form, also applies to chromatin structure, which directly affects genomic activity by activating or silencing genes and gene families.
The Lancet Oncology , commentaire en libre accès, 2017