• Biologie

  • Oncogènes et suppresseurs de tumeurs

  • Foie

Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice

Menée à l'aide de modèles murins, cette étude met en évidence un mécanisme par lequel l'activation péritumorale des coactivateurs transcriptionnels YAP et TAZ de la voie de signalisation Hippo supprime les cellules hépatiques cancéreuses

The Hippo signaling pathway has been implicated in tumor growth, sparking interest in the pathway as a potential therapeutic target. In a study of liver cancer in genetically manipulated mice, Moya et al. discovered that the role of this pathway in tumorigenesis is more complex than previously appreciated. They confirmed that activation of the Hippo pathway within tumor cells drives tumor growth; however, they also found that activation of the pathway in adjacent healthy cells has the opposite effect, suppressing tumor growth. Whether tumor cells survive or are eliminated thus appears to depend on competing signals produced by the tumor and surrounding tissue.Science, this issue p. 1029The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of Yap and Taz in these peritumoral hepatocytes accelerated tumor growth. Conversely, experimental hyperactivation of YAP in peritumoral hepatocytes triggered regression of primary liver tumors and melanoma-derived liver metastases. Furthermore, whereas tumor cells growing in wild-type livers required YAP and TAZ for their survival, those surrounded by Yap- and Taz-deficient hepatocytes were not dependent on YAP and TAZ. Tumor cell survival thus depends on the relative activity of YAP and TAZ in tumor cells and their surrounding tissue, suggesting that YAP and TAZ act through a mechanism of cell competition to eliminate tumor cells.

Science 2019

Voir le bulletin