Real time remote symptom monitoring during chemotherapy for cancer: European multicentre randomised controlled trial (eSMART)
Mené sur 829 patients atteints d'un cancer, cet essai évalue l'intérêt, du point de vue de la prise en charge des symptômes et des besoins en soins de support, de l'amélioration de la qualité de vie et du sentiment d'auto-efficacité, d'un outil permettant une surveillance à distance des effets indésirables liés à la chimiothérapie adjuvante
Objective : To evaluate effects of remote monitoring of adjuvant chemotherapy related side effects via the Advanced Symptom Management System (ASyMS) on symptom burden, quality of life, supportive care needs, anxiety, self-efficacy, and work limitations. Design : Multicentre, repeated measures, parallel group, evaluator masked, stratified randomised controlled trial. Setting: Twelve cancer centres in Austria, Greece, Norway, Republic of Ireland, and UK. Participants : 829 patients with non-metastatic breast cancer, colorectal cancer, Hodgkin’s disease, or non-Hodgkin’s lymphoma receiving first line adjuvant chemotherapy or chemotherapy for the first time in five years. Intervention : Patients were randomised to ASyMS (intervention; n=415) or standard care (control; n=414) over six cycles of chemotherapy. Main outcome measures : The primary outcome was symptom burden (Memorial Symptom Assessment Scale; MSAS). Secondary outcomes were health related quality of life (Functional Assessment of Cancer Therapy—General; FACT-G), Supportive Care Needs Survey Short-Form (SCNS-SF34), State-Trait Anxiety Inventory—Revised (STAI-R), Communication and Attitudinal Self-Efficacy scale for cancer (CASE-Cancer), and work limitations questionnaire (WLQ). Results : For the intervention group, symptom burden remained at pre-chemotherapy treatment levels, whereas controls reported an increase from cycle 1 onwards (least squares absolute mean difference −0.15, 95% confidence interval −0.19 to −0.12; P<0.001; Cohen’s D effect size=0.5). Analysis of MSAS sub-domains indicated significant reductions in favour of ASyMS for global distress index (−0.21, −0.27 to −0.16; P<0.001), psychological symptoms (−0.16, −0.23 to −0.10; P<0.001), and physical symptoms (−0.21, −0.26 to −0.17; P<0.001). FACT-G scores were higher in the intervention group across all cycles (mean difference 4.06, 95% confidence interval 2.65 to 5.46; P<0.001), whereas mean scores for STAI-R trait (−1.15, −1.90 to −0.41; P=0.003) and STAI-R state anxiety (−1.13, −2.06 to −0.20; P=0.02) were lower. CASE-Cancer scores were higher in the intervention group (mean difference 0.81, 0.19 to 1.43; P=0.01), and most SCNS-SF34 domains were lower, including sexuality needs (−1.56, −3.11 to −0.01; P<0.05), patient care and support needs (−1.74, −3.31 to −0.16; P=0.03), and physical and daily living needs (−2.8, −5.0 to −0.6; P=0.01). Other SCNS-SF34 domains and WLQ were not significantly different. Safety of ASyMS was satisfactory. Neutropenic events were higher in the intervention group. Conclusions : Significant reduction in symptom burden supports the use of ASyMS for remote symptom monitoring in cancer care. A “medium” Cohen’s effect size of 0.5 showed a sizable, positive clinical effect of ASyMS on patients’ symptom experiences. Remote monitoring systems will be vital for future services, particularly with blended models of care delivery arising from the covid-19 pandemic.