CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics
Menée in vitro et à l'aide de modèles murins, cette étude met en évidence l'intérêt, pour détecter de manière non invasive des tumeurs, de nanocorps couplés à une séquence d'ADN qui, une fois clivée par une endonucléase spécifique du microenvironnement tumoral, est excrétée dans les urines puis lue à l'aide de nucléases CRISPR
Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be ‘read out’ via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.
Nature Nanotechnology , article en libre accès, 2023