• Traitements

  • Traitements systémiques : découverte et développement

  • Système nerveux central

Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases

Menée à l'aide de lignées cellulaires, de modèles murins et d'échantillons tumoraux provenant de patientes atteintes d'un cancer du sein avec métastases cérébrales, cette étude met en évidence le rôle de la plasticité métabolique des mitochondries dans la survie des cellules métastatiques latentes et démontre que la limitation de cette plasticité, via l'inhibition pharmacologique de l'expression de la protéine DRP1, permet de réduire le développement de métastases cérébrales

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.

Nature Cancer 2023

Voir le bulletin