• Dépistage, diagnostic, pronostic

  • Découverte de technologies et de biomarqueurs

  • Voies aérodigestives supérieures

Radiomic signatures associated with tumor immune heterogeneity predict survival in locally recurrent nasopharyngeal carcinoma

Menée à partir de données portant sur 921 patients atteints d'un carcinome rhinopharyngé ayant récidivé localement, cette étude met en évidence l'intérêt, pour prédire la survie globale, de signatures radiomiques associées à l'hétérogénéité immunitaire de la tumeur et basées sur des caractéristiques d'images d'IRM réalisées avant traitement

Background : The prognostic value of traditional clinical indicators for locally recurrent nasopharyngeal carcinoma (lrNPC) is limited due to their inability to reflect intratumor heterogeneity. We aimed to develop a radiomic signature to reveal tumor immune heterogeneity and predict survival in lrNPC.

Methods : This multicenter, retrospective study included 921 patients with lrNPC. A machine learning signature and nomogram based on pretreatment MRI features were developed for predicting overall survival (OS) in a training cohort and validated in two independent cohorts. A clinical nomogram and an integrated nomogram were constructed for comparison. Nomogram performance was evaluated by concordance index (C-index) and receiver operating characteristic curve analysis. Accordingly, patients were classified into risk groups. The biological characteristics and immune infiltration of the signature were explored by RNA sequencing (RNA-seq) analysis.

Results : The machine learning signature and nomogram demonstrated comparable prognostic ability to a clinical nomogram, achieving C-indexes of 0.729, 0.718, and 0.731 in the training, internal, and external validation cohorts, respectively. Integration of the signature and clinical variables significantly improved the predictive performance. The proposed signature effectively distinguished patients between risk groups with significantly distinct OS rates. Subgroup analysis indicated the recommendation of local salvage treatments for low-risk patients. Exploratory RNA-seq analysis revealed differences in interferon response and lymphocyte infiltration between risk groups.

Conclusions : An MRI-based radiomic signature predicted OS more accurately. The proposed signature associated with tumor immune heterogeneity may serve as a valuable tool to facilitate prognostic stratification and guide individualized management for lrNPC patients.

Journal of the National Cancer Institute , résumé, 2023

Voir le bulletin