• Dépistage, diagnostic, pronostic

  • Découverte de technologies et de biomarqueurs

  • Voies biliaires

Dynamic urinary proteomics integrates single-cell and spatial transcriptomics to reveal tumour microenvironment and predict immunotherapy response in biliary tract cancer

Menée à partir de l'analyse par spectrométrie de masse de 211 échantillons urinaires prélevés sur 97 patients atteints d'un cancer des voies biliaires traité par inhibiteur de point de contrôle immunitaire et menée à l'aide d'un algorithme d'apprentissage automatique, cette étude met en évidence l'intérêt d'une signature, basée sur un panel de 4 protéines (PTPN13, SUB1, MICAL-L1 et VARS1), pour prédire la réponse thérapeutique

Background : Most patients with biliary tract cancer (BTC) do not derive durable clinical benefit (DCB) from immune checkpoint inhibitors (ICIs), underscoring the urgent need for predictive biomarkers. While urinary proteomics represents a non-invasive approach for biomarker discovery and mechanism exploration, its utility in ICI-treated patients with cancer remains unexplored.

Objective : We aimed to establish urinary proteomics as a predictive tool for ICI responsiveness and to elucidate its relationship with tumour dynamics and tumour microenvironment (TME) remodelling in BTC.

Design : We performed a staged mass spectrometry (MS)-based discovery-validation proteomics workflow in 211 urine samples from 97 treatment-naïve patients with BTC undergoing ICI-based therapy. A machine learning model was developed based on baseline proteomic features for ICI response prediction. Single-cell transcriptomics of 11 pretreatment tumour biopsies and spatial transcriptomics were integrated to explore the link between urinary proteomics and TME.

Results : Patients achieving DCB exhibited enrichment of immune activation and systemic inflammatory pathways, whereas non-durable benefit was correlated with protumourigenic processes. Longitudinal urinary proteomic dynamics could mirror TME remodelling and tumour evolution. A machine learning-derived 4-urinary protein panel (protein tyrosine phosphatase non-receptor 13 (PTPN13), SUB1, MICAL-L1, VARS1) robustly predicted DCB and early responses. Subsequent external validation in an independent cohort (n=24) using parallel reaction monitoring-MS further confirms its generalisability. PTPN13+ malignant cells were identified as key regulators of proapoptotic TME states, contributing to sustained ICI responsiveness.

Conclusions : This study pioneers the application of urinary proteomics in immuno-oncology, providing a non-invasive approach to predict and monitor ICI responsiveness, while offering mechanistic insights into TME dynamics in BTC.

Gut , article en libre accès, 2025

Voir le bulletin