• Traitements

  • Traitements systémiques : découverte et développement

  • Colon-rectum

Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents

Menée in vitro et in vivo, cette étude met en évidence un mécanisme, lié à l'activation de la signalisation PI3K/AKT, permettant de rendre compte de la résistance au vemurafenib dans les cancers colorectaux présentant la mutation V600E du gène BRAF

Purpose: Vemurafenib, a selective inhibitor of BRAFV600 has shown significant activity in BRAFV600 melanoma, but not in the <10% of metastatic BRAFV600 colorectal cancers (CRC), suggesting that studies of the unique hypermethylated phenotype and concurrent oncogenic activation of BRAFmut CRC may provide combinatorial strategies Experimental Design: We performed comparative proteomic analysis of BRAFV600E melanoma and CRC cell lines, followed by correlation of PI3K pathway activation and sensitivity to the vemurafenib-analog PLX-4720. Pharmacologic inhibitors and siRNA were used in combination with PLX4720 to inhibit PI3K and methyltrasnferase in cell lines and murine models. Results: Compared to melanoma, CRC lines demonstrate higher levels of PI3K/AKT pathway activation. CRC cell lines with mutations in PTEN or PIK3CA were less sensitive to growth inhibition by PLX4720 (P=0.03), and knockdown of PTEN expression in sensitive CRC cells reduced growth inhibition by the drug. Combined treatment of PLX4720 with PI3K inhibitors caused synergistic growth inhibition in BRAF-mutant CRC cells with both primary and secondary resistance. In addition, methyltransferase inhibition was synergistic with PLX4720 and decreased AKT activation. In vivo, PLX4720 combined with either inhibitors of AKT or methyltransferase demonstrated greater tumor growth inhibition than PLX4720 alone. Clones with acquired resistance to PLX4720 in vitro demonstrated PI3K/AKT activation with EGFR or KRAS amplification. Conclusions: We demonstrate that activation of the PI3K/AKT pathway is a mechanism of both innate and acquired resistance to BRAF inhibitors in BRAFV600E CRC, and suggest combinatorial approaches to improve outcomes in this poor prognosis subset of patients.

Clinical Cancer Research

Voir le bulletin