• Biologie

  • Progression et métastases

  • Prostate

The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis

Menée à l'aide de modèles murins, cette étude met en évidence des mécanismes par lesquels la protéase TMPRSS2 favorise le processus métastatique d'un cancer de la prostate

TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling pro-grams and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. SIGNIFICANCE The vast majority of prostate cancer deaths are due to metastasis. Loss of TMPRSS2 activity dramatically attenuated the metastatic phenotype through mechanisms involving the HGF/c-MET axis. Therapeutic approaches directed toward inhibiting TMPRSS2 may reduce the inci-dence or progression of metastasis in prostate cancer patients.

Cancer Discovery

Voir le bulletin